Lecture 1
Introduction

Computing platforms

Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018

What is a [computing] platform?

So, what we mean by Platform

Platform is something you can use
to build something else
In this course, we somewhat extend this concept

— We call a Platform something you can use

— So we can group application and system components
into a single category

In computing, many platforms are actually
virtual machines built on top of another platform

But you cannot build a purely virtual machine
— There must be something real at the bottom

Computer languages

Digital computers are language machines

— You write a program in some language

— Computer runs (executes) it

Every platform has a language (some have many)

Build something on a platform
~= write a program using a platform language

But platform is not A language,

It is an environment (virtual machine) to run
programs in a specific language

And often a toolset to aid in creating programs
(debuggers, profilers, IDE, etc)

Platforms hierarchy

5: Application-level VM (S): Word Processors, Web Browsers, Game Engines , etc

4: High-level VM (S): C/C++, Java, Python, etc

(S): Macro-assembler

3: Low-level VM (S): Assembler

2: Register file, ALU, Instruction Execution (H) plus OS Kernel (S): Machine code interpreter

1: Sequential Logic (H): Digital signals, gates, muxes, latches and memory

0: Switching technology (H): Voltages, transistors, capacitive elements, etc

It is even more complex

Modern technology allows us to build anything from anything

Application-level platform can have it’s own programming language
(“scripting language”), and people can use it to build something of
even higher level

— Example: Web browsers and JavaScript
You can use high-level platforms to emulate lower-level ones

— Example: Virtual machines in narrow sense
(hypervisors, like VirtualBox or VMWare)

— You can write a program in JS, emulating a hardware CPU capable of
booting Linux or Unix (try to calculate a platform level of C program
running on this system) and because of optimizing JiT it can have a
decent performance

We won’t discuss it now, let’s deal with simple case first

Why so many levels?

* Short answer:
— Modern computer systems are very complex
— Hierarchy is one of best ways to deal with complexity

e Another short answer

— You can simplify programming
(=> write more complex programs)
by making computer to help you write programs

— Then it got out of control
* Long answer:

— Probably you will understand it
as you learn several platforms of different levels

What is virtual machine

In this course, virtual machine is a platform that is
different from lower level platform

— Other textbooks and documents can use different
definitions

Usually, higher level platform is easier to program
So, most programming is done in Level 4 and higher
Other reasons to create virtual machines:

— To run programs from old or different platforms

— To run several platforms on single physical machine

— To aid in testing and debugging
— Etc

Why study low level platforms?

Virtual machines are not perfect

VM tries to isolate you from details of lower-
level platform, but it is impossible

Specifics of low-level platforms (resource

limitations, performance bottlenecks, logical
constraints, etc) leak to higher levels

If you know low-level platforms, you will
understand higher-level ones (like C language
or operating systems) much better.

Language translation

Create VM ~= create a mechanism to translate
platform language to the lower-level platform

Two main techniques:

— Compilation

* You take source program and generate a new (supposedly
equivalent) program in target language

— Interpretation
* You take source program and interpret is statement by statement

Lowest level language must be interpreted, because
(by definition) there is no lower-level native language

There are hybrid techniques, like JiT compilation
— But we won’t discuss them now

Advantages of compilation

 Compiled program is not different from native
language program.
Actually, it IS a native program

* It means, there is no runtime overhead
— compiled program can be suboptimal,
this can be seen as form of the overhead

* Modern compilers are very good
at writing optimal programs,
on average, better than humans

Advantages of interpretation

Interpreter is often simpler than a compiler

You can do runtime checks (implement a
“sandbox”) and run untrusted programs

Handling runtime errors is much simpler

Development and debugging cycle can be
faster (no compilation phase)

Software and hardware

e Software and hardware are equivalent

— With the exception that pure software cannot run
(it must have some hardware below)

— To run software, hardware must be programmable

e Any specific function can be implemented both in hardware and in
software

— In this course we will learn how to implement some interesting
functions in hardware

— | hope this will give you the idea how to implement even more
complex functions, essentially everything you can imagine
 There are tools to describe hardware designs in high-level
languages, similar to high-level programming languages, and
automatically build circuits based on these descriptions (silicon
compilation)

— Most modern hardware is designed by tools like that

Reasons to choose

Reasons to choose between hard- and software
are mostly economical

Hardware is usually faster,
but this is not always important

Software is cheaper to develop, copy and modify
Complex designs practically always have bugs
— You cannot use them if you cannot modify (fix) them

Multilevel organization allows you to move
between hard- and software implementations
without breaking higher-level platforms

Von Neumann computer

A programmable computing platform with random access
program memory

Typical example of Level 2 platform

Usually an interpreter

— there were attempts to implement so called binary compilation,
but they failed and there are reasons for that

One of most widely used types of programmable hardware

— We will briefly discuss some other types of programmable
hardware in next semester

— Anything called a "computer” has [at least one] von Neumann
CPU inside

— Many pieces of modern hardware you do not call a “computer”
also have von Neumann CPU[s] inside

More on von Neumann computers

* Von Neumann computer interprets values in
memory as commands (instructions)

* Values in memory are numbers

— In binary computers, they can be viewed as bit
strings (thus the term “binary code”)

— But some von Neuman computers were not binary
— For example, ENIAC was decimal

CPU commands

Every valid command has a number (opcode)

List of all valid commands (together with description of
their semantics) is known as

ISA (Instruction Set Architecture) or

machine language

ISA is not to be confused with assembly language,
which is Level 3 platform in our classification

Program in machine language is a sequence of numeric
(binary) commands, known as binary code

Assembly language program is a human-readable
representation of machine language program

Why random access is important

When program is loaded in random access memory,
every command has an address

(a number of memory cell where this command is
located)

Von Neumann CPU has so called jump (branch)
instructions that transfer execution to any specific
address

So, the execution of program is not [strictly] sequential

Jump instructions are used to implement constructs
like loops, conditional statements, subroutine calls, etc

Most of this semester is dedicated to studying how this
actually works

CPU families

People want to run programs for old CPUs on newer machines
Series of CPU with the same or compatible ISA

— Compatible means that never versions of ISA have all the same
commands as older one, may be with addition of some new
commands.

Oldest widely used ISA is IBM System/360, first developed in 1965.
— Still fully supported by IBM System/z computers

Probably second oldest (between widely used now) is
MCS-48 family of 8-bit microcontrollers, developed by Intel in 1976
and licensed by other manufacturers.

— Every PC-compatible motherboard has MCS-48 circuit, typically
implemented as part of so-called “south bridge”

Popular ISA: ARM and x86

* x86 - CPU family compatible with Intel 80386, released in
1987.
— Older Intel CPU like 8086/88 and 80286 are NOT members of
x86 family
— Originally 32-bit, extended to 64-bit (x86_64 or simply x64) by
AMD in 2003
 ARM (originally Acorn RISC Machine) was developed by
Acorn Computers in 1985 for use in Acorn Archimedes
microcomputer.

— In 1990s it was licensed by other manufacturers mostly for
embedded applications

— In 2000s it started to gain popularity in smartphones, and circa
2010 it surpassed x86 by worldwide usage

— Originally 32-bit, extended to 64-bit in 2011.

Why not study commercial ISA?

Well, nobody forbids you to study ARM or x86 or MCS-
48/51 or Atmel AVR or etc

— On interview, I've heard some of you actually studied Arduino

But commercial ISA have long (and sometimes tragic)
history and are constrained by backward compatibility

Many important details and even concepts of x86 or ARM
cannot be understood without knowing peculiarities of
1980s hardware and intellectual fashion of that period

Xx86 is also constrained by attempts to maintain assembly-
level and OS-level compatibility with 80286, 8086 and even
earlier 8080/85 ISA

This will distract us from basic concepts we need to
understand

Welcome CdM-8

* CdM-8 is a 8-bit Level 2 platform (von
Neumann CPU) designed by A. Shafarenko

 Two implementations:

— Software emulator cocoemu, written in Python
* Works together with CocolDE

— Gate-level (Level 1) circuit file for Logisim

— No silicon and copper hardware implementation
(somebody want to volunteer?)

Why CdM-8 (an analogy)

Modern aircrafts are pretty complex

[MEGGI
AEROSPACE EQUIPMENT & SYSTEMS

Shet O

Faght Deck
Display Paseis @
B wasinieia

Ant) iging Vatve

Winoshield Kan
B Remevel Vaive

W Ram A

¥ Cables
Emergency Power
[ShurOH Vaive
o Fire Detection
Control Module

Landing Gear
Wseiecior Vaives

. Blesd Ax

Engine Clearance
ontrol Valves

I Breed Air
Reguiator

[
S

TT WHITTAKER CONTROLS, DUNLOP EQUIPMENT &
' SAFETY SYSTEMS

@7 'ew Contrad
Regulator

Engine Gearde,
Fire Detection

Vertic sl Stabilin
Antiice Va

ooter

Lavatery Smoke ©
W smoke Crearance Vatve Detectson

W T oty Conin

Pressurisation o o

W vatve
Ble e Mydrauhic
a -‘\l::: ...2’..,,.. Vatve
>

Retwel | Detuel
Vaive Il

[_APY Fire Detecton
APU Bleed Valve
Emergency Ra
e vave T H
Cargo Tsotation

Entertainment Flectronic:
Cempartment Cocln.
drauiic Comtrel Valve .

Pressure Vaive [l

Retyeting & Jetmnon Vaives I
Fuel Tank Presserisation Vaives [l
g Antiice [l

Fuel Frechech Vatve
Wing Ansiice Overheat Protection [l
Fuel Shut0t Varve I

Pyton Cootng Vaive [l

aulic Quch
connects

BT Ve
W Nose Cowt Antidce Vatve
Wi Turtine Clearance Contral Valves
W Nacette Coshing Vabve
@ Engne Fure .
£CS Air Control Vi
Fiight Lock Actusor @

Nose Whee! Steenng
Control Vatves

\Whittales

Avionics Compartment Cooling [l]

[Cabin T Controt [l
Forward Cargo Compartment Caoling
Cargo Compartment Smoke Detectors @

. WHITTAKER CONTROLS @ MEOOITT SAFETY SYSTEMS

So let’s start from something simpler

Why it is good idea

t can fly
tis fun to fly

t can be disassembled to sticks and gadgets and
assembled back (and it is also fun)

It can illustrate basic concepts like lift and drag

It can illustrate some not so basic concepts like
stability, weight discipline and stall recovery

As you understand basics, we can move to
something more complex

Advantages of CdM-8

Very simple design, good for illustrating both Level 2/3 and
Level 0/1 concepts

No backward compatibility burden and related complexity
Fully functional (for a CPU with 256 bytes of total memory)

Advanced macroassembler with some capabilities of Level
4 platforms (thus the name Level 3 %)

Nice IDE with ability to see all program and data memory in
a single window (impossible even on 16-bit CPU!)

Extended version with interrupts, memory banks and
system/user mode

Ability to extend the design with Logisim circuits

Two types of von Neumann CPU

Manchester architecture
(for “Manchester Baby”)

— Stores program and data in same memory

— In some textbooks, only Manchester computers are called von
Neumann computers

Harvard architecture
(for Harvard Mark I, which was not even stored-memory computer)

— Uses separate banks of memory for program and data

— If you remember, ENIAC was actually a Harvard computer
Some CPUs can be switched from Harvard to Manchester by single
fuse or just by reconnecting memory banks
Some textbooks and documents use other definitions

— For example, some CPUs use separate caches for code and data, and
this is called Harvard architecture even if these caches are backed by
same main memory

Course materials

http://fit.nsu.ru/~fat/Platforms

Short documentation on CdM-8 ISA and long book,
containing full description of CdM-8 platform and
toolchain and other useful and interesting info.

To run CdM-8 tools (cocoide, cocas, cocoemu), you
need Python 2 (2.6 or 2.7 recommended). Cocoide
depends on tkinter library (installed by default on
Windows and MacQS)

For your convenience, Logisim archive is included. You
also can download it from official site
http://www.cburch.com/logisim/ , it is free.

http://fit.nsu.ru/~fat/Platforms
http://www.cburch.com/logisim/

How we will work

Your main teaching guide is Cocomaro the Robot.
It is @ mail robot which will send you emails

Every email will contain a task description and
instructions how to submit a solution

After your send a correct solution for a task, Cocomaro
will send you next one

Cocomaro checks for new mail every three minutes
24/7 (if it does not, you should alert me)

If you have questions, you are free to ask me and other
teachers, personally during practice lessons or by email

Course grading

Tasks sent by Cocomaro will not be graded, so
cheating is pointless

We will have assessment tests on most of
practical lessons

Assessments will include questions and
solving tasks similar to ones that were sent by
Cocomaro

You will solve tasks in controlled environment,
with cheating prohibited

Course grading

First semester is graded fail/pass

To pass, you must successfully complete ~25% of all tests
(I hope this will be simple)

Second semester is graded 2/3/4/5
You do a group project

Groups are formed semi-randomly, so every team will have
students of different level (based on assessment tests)

Group project results are main component of the final
grade

If you are not happy with project results, you can try to get
a higher grade by passing the exam

Some interesting facts

One of the first working von Neumann
computers was created programmatically

Originally it was the first fully-electronic
computer called ENIAC

Design started in 1943, delivered in 1945

Used for military research, including numerical
modelling of thermonuclear explosives

It was programmed by so called plugboards

Plugboards

* Also known as
patch panels

 Usedin 1930s
to “program”
IBM tabulators
(machines for
processing
punch cards)

Image CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=522789

Plugboards and tabulators

An IBM 407 Accounting
Machine with control
panel (plugboard)
inserted, but not
engaged.

https://en.wikipedia.org/wiki/IBM_407

On the left:
Arithmetical units
with plugboards

On the right:
Function tables
(sort of read-only
random-access
memory, every cell
is @ mechanical
10-position switch)

ENIAC as von Neumann CPU

In 1948, ENIAC was converted to a stored-
program computer by creating a “program”
(plugboard wiring) to use function tables as
program memory

Von Neumann was not inventor of this idea, but
he worked as a consultant in EDVAC project and
participated in ENIAC conversion

EDVAC was operational in 1949 and was not a
true von Neumann machine

EDVAC used serial (not random access) program
memory based on mercury delay lines

First true von Neumann computer

“Manchester baby” or SSEM
Created in Victoria University of Manchester, England
Von Neumann had nothing to do with that project

Run first program 21 June 1948
three months before converted ENIAC

Had random-access memory based on so-called
Williams tube (read Wikipedia...)

Used same memory for program and data

Was a testbed for Manchester Mark | and later Ferranti
Mark | (first serially produced and commercially
available stored-memory computer)

What happened next

* After stored program computer proved to be a
good idea, people started to write program
tools to simplify programming: assemblers
and linkers

 Then other people invented higher level
languages, like autocode, Fortran and Lisp

* And then it got out of control and now we
have multilevel platforms writing programs for
themselves

