
Lecture 1
Introduction

Computing platforms
Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018

What is a [computing] platform?

So, what we mean by Platform

• Platform is something you can use
to build something else

• In this course, we somewhat extend this concept
– We call a Platform something you can use
– So we can group application and system components

into a single category
• In computing, many platforms are actually

virtual machines built on top of another platform
• But you cannot build a purely virtual machine
– There must be something real at the bottom

Computer languages
• Digital computers are language machines
– You write a program in some language
– Computer runs (executes) it

• Every platform has a language (some have many)
• Build something on a platform

~= write a program using a platform language
• But platform is not A language,
• It is an environment (virtual machine) to run

programs in a specific language
• And often a toolset to aid in creating programs

(debuggers, profilers, IDE, etc)

Platforms hierarchy

0: Switching technology (H): Voltages, transistors, capacitive elements, etc

1: Sequential Logic (H): Digital signals, gates, muxes, latches and memory

2: Register file, ALU, Instruction Execution (H) plus OS Kernel (S): Machine code interpreter

3: Low-level VM (S): Assembler

(S): Macro-assembler

4: High-level VM (S): C/C++, Java, Python, etc

5: Application-level VM (S): Word Processors, Web Browsers, Game Engines , etc

It is even more complex
• Modern technology allows us to build anything from anything
• Application-level platform can have it’s own programming language

(“scripting language”), and people can use it to build something of
even higher level
– Example: Web browsers and JavaScript

• You can use high-level platforms to emulate lower-level ones
– Example: Virtual machines in narrow sense

(hypervisors, like VirtualBox or VMWare)
– You can write a program in JS, emulating a hardware CPU capable of

booting Linux or Unix (try to calculate a platform level of C program
running on this system) and because of optimizing JiT it can have a
decent performance

• We won’t discuss it now, let’s deal with simple case first

Why so many levels?

• Short answer:
– Modern computer systems are very complex
– Hierarchy is one of best ways to deal with complexity

• Another short answer
– You can simplify programming

(=> write more complex programs)
by making computer to help you write programs

– Then it got out of control
• Long answer:
– Probably you will understand it

as you learn several platforms of different levels

What is virtual machine
• In this course, virtual machine is a platform that is

different from lower level platform
– Other textbooks and documents can use different

definitions
• Usually, higher level platform is easier to program
• So, most programming is done in Level 4 and higher
• Other reasons to create virtual machines:
– To run programs from old or different platforms
– To run several platforms on single physical machine
– To aid in testing and debugging
– Etc

Why study low level platforms?

• Virtual machines are not perfect
• VM tries to isolate you from details of lower-

level platform, but it is impossible
• Specifics of low-level platforms (resource

limitations, performance bottlenecks, logical
constraints, etc) leak to higher levels

• If you know low-level platforms, you will
understand higher-level ones (like C language
or operating systems) much better.

Language translation
• Create VM ~= create a mechanism to translate

platform language to the lower-level platform
• Two main techniques:
– Compilation

• You take source program and generate a new (supposedly
equivalent) program in target language

– Interpretation
• You take source program and interpret is statement by statement

• Lowest level language must be interpreted, because
(by definition) there is no lower-level native language

• There are hybrid techniques, like JiT compilation
– But we won’t discuss them now

Advantages of compilation

• Compiled program is not different from native
language program.
Actually, it IS a native program

• It means, there is no runtime overhead
– compiled program can be suboptimal,

this can be seen as form of the overhead
• Modern compilers are very good

at writing optimal programs,
on average, better than humans

Advantages of interpretation

• Interpreter is often simpler than a compiler
• You can do runtime checks (implement a

“sandbox”) and run untrusted programs
• Handling runtime errors is much simpler
• Development and debugging cycle can be

faster (no compilation phase)

Software and hardware
• Software and hardware are equivalent

– With the exception that pure software cannot run
(it must have some hardware below)

– To run software, hardware must be programmable
• Any specific function can be implemented both in hardware and in

software
– In this course we will learn how to implement some interesting

functions in hardware
– I hope this will give you the idea how to implement even more

complex functions, essentially everything you can imagine
• There are tools to describe hardware designs in high-level

languages, similar to high-level programming languages, and
automatically build circuits based on these descriptions (silicon
compilation)
– Most modern hardware is designed by tools like that

Reasons to choose

• Reasons to choose between hard- and software
are mostly economical

• Hardware is usually faster,
but this is not always important

• Software is cheaper to develop, copy and modify
• Complex designs practically always have bugs
– You cannot use them if you cannot modify (fix) them

• Multilevel organization allows you to move
between hard- and software implementations
without breaking higher-level platforms

Von Neumann computer
• A programmable computing platform with random access

program memory
• Typical example of Level 2 platform
• Usually an interpreter

– there were attempts to implement so called binary compilation,
but they failed and there are reasons for that

• One of most widely used types of programmable hardware
– We will briefly discuss some other types of programmable

hardware in next semester
– Anything called a ”computer” has [at least one] von Neumann

CPU inside
– Many pieces of modern hardware you do not call a “computer”

also have von Neumann CPU[s] inside

More on von Neumann computers

• Von Neumann computer interprets values in
memory as commands (instructions)

• Values in memory are numbers
– In binary computers, they can be viewed as bit

strings (thus the term “binary code”)
– But some von Neuman computers were not binary
– For example, ENIAC was decimal

CPU commands

• Every valid command has a number (opcode)
• List of all valid commands (together with description of

their semantics) is known as
ISA (Instruction Set Architecture) or
machine language

• ISA is not to be confused with assembly language,
which is Level 3 platform in our classification

• Program in machine language is a sequence of numeric
(binary) commands, known as binary code

• Assembly language program is a human-readable
representation of machine language program

Why random access is important
• When program is loaded in random access memory,

every command has an address
(a number of memory cell where this command is
located)

• Von Neumann CPU has so called jump (branch)
instructions that transfer execution to any specific
address

• So, the execution of program is not [strictly] sequential
• Jump instructions are used to implement constructs

like loops, conditional statements, subroutine calls, etc
• Most of this semester is dedicated to studying how this

actually works

CPU families
• People want to run programs for old CPUs on newer machines
• Series of CPU with the same or compatible ISA

– Compatible means that never versions of ISA have all the same
commands as older one, may be with addition of some new
commands.

• Oldest widely used ISA is IBM System/360, first developed in 1965.
– Still fully supported by IBM System/z computers

• Probably second oldest (between widely used now) is
MCS-48 family of 8-bit microcontrollers, developed by Intel in 1976
and licensed by other manufacturers.
– Every PC-compatible motherboard has MCS-48 circuit, typically

implemented as part of so-called ”south bridge”

Popular ISA: ARM and x86
• x86 - CPU family compatible with Intel 80386, released in

1987.
– Older Intel CPU like 8086/88 and 80286 are NOT members of

x86 family
– Originally 32-bit, extended to 64-bit (x86_64 or simply x64) by

AMD in 2003
• ARM (originally Acorn RISC Machine) was developed by

Acorn Computers in 1985 for use in Acorn Archimedes
microcomputer.
– In 1990s it was licensed by other manufacturers mostly for

embedded applications
– In 2000s it started to gain popularity in smartphones, and circa

2010 it surpassed x86 by worldwide usage
– Originally 32-bit, extended to 64-bit in 2011.

Why not study commercial ISA?
• Well, nobody forbids you to study ARM or x86 or MCS-

48/51 or Atmel AVR or etc
– On interview, I’ve heard some of you actually studied Arduino

• But commercial ISA have long (and sometimes tragic)
history and are constrained by backward compatibility

• Many important details and even concepts of x86 or ARM
cannot be understood without knowing peculiarities of
1980s hardware and intellectual fashion of that period

• x86 is also constrained by attempts to maintain assembly-
level and OS-level compatibility with 80286, 8086 and even
earlier 8080/85 ISA

• This will distract us from basic concepts we need to
understand

Welcome CdM-8

• CdM-8 is a 8-bit Level 2 platform (von
Neumann CPU) designed by A. Shafarenko

• Two implementations:
– Software emulator cocoemu, written in Python
• Works together with CocoIDE

– Gate-level (Level 1) circuit file for Logisim
– No silicon and copper hardware implementation

(somebody want to volunteer?)

Why CdM-8 (an analogy)
Modern aircrafts are pretty complex

So let’s start from something simpler

Why it is good idea

• It can fly
• It is fun to fly
• It can be disassembled to sticks and gadgets and

assembled back (and it is also fun)
• It can illustrate basic concepts like lift and drag
• It can illustrate some not so basic concepts like

stability, weight discipline and stall recovery
• As you understand basics, we can move to

something more complex

Advantages of CdM-8
• Very simple design, good for illustrating both Level 2/3 and

Level 0/1 concepts
• No backward compatibility burden and related complexity
• Fully functional (for a CPU with 256 bytes of total memory)
• Advanced macroassembler with some capabilities of Level

4 platforms (thus the name Level 3 ½)
• Nice IDE with ability to see all program and data memory in

a single window (impossible even on 16-bit CPU!)
• Extended version with interrupts, memory banks and

system/user mode
• Ability to extend the design with Logisim circuits

Two types of von Neumann CPU
• Manchester architecture

(for “Manchester Baby”)
– Stores program and data in same memory
– In some textbooks, only Manchester computers are called von

Neumann computers
• Harvard architecture

(for Harvard Mark I, which was not even stored-memory computer)
– Uses separate banks of memory for program and data
– If you remember, ENIAC was actually a Harvard computer

• Some CPUs can be switched from Harvard to Manchester by single
fuse or just by reconnecting memory banks

• Some textbooks and documents use other definitions
– For example, some CPUs use separate caches for code and data, and

this is called Harvard architecture even if these caches are backed by
same main memory

Course materials

• http://fit.nsu.ru/~fat/Platforms
• Short documentation on CdM-8 ISA and long book,

containing full description of CdM-8 platform and
toolchain and other useful and interesting info.

• To run CdM-8 tools (cocoide, cocas, cocoemu), you
need Python 2 (2.6 or 2.7 recommended). Cocoide
depends on tkinter library (installed by default on
Windows and MacOS)

• For your convenience, Logisim archive is included. You
also can download it from official site
http://www.cburch.com/logisim/ , it is free.

http://fit.nsu.ru/~fat/Platforms
http://www.cburch.com/logisim/

How we will work

• Your main teaching guide is Cocomaro the Robot.
• It is a mail robot which will send you emails
• Every email will contain a task description and

instructions how to submit a solution
• After your send a correct solution for a task, Cocomaro

will send you next one
• Cocomaro checks for new mail every three minutes

24/7 (if it does not, you should alert me)
• If you have questions, you are free to ask me and other

teachers, personally during practice lessons or by email

Course grading

• Tasks sent by Cocomaro will not be graded, so
cheating is pointless

• We will have assessment tests on most of
practical lessons

• Assessments will include questions and
solving tasks similar to ones that were sent by
Cocomaro

• You will solve tasks in controlled environment,
with cheating prohibited

Course grading
• First semester is graded fail/pass
• To pass, you must successfully complete ~25% of all tests

(I hope this will be simple)
• Second semester is graded 2/3/4/5
• You do a group project
• Groups are formed semi-randomly, so every team will have

students of different level (based on assessment tests)
• Group project results are main component of the final

grade
• If you are not happy with project results, you can try to get

a higher grade by passing the exam

Some interesting facts

• One of the first working von Neumann
computers was created programmatically

• Originally it was the first fully-electronic
computer called ENIAC

• Design started in 1943, delivered in 1945
• Used for military research, including numerical

modelling of thermonuclear explosives
• It was programmed by so called plugboards

Plugboards

• Also known as
patch panels

• Used in 1930s
to “program”
IBM tabulators
(machines for
processing
punch cards)

Image CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=522789

Plugboards and tabulators

An IBM 407 Accounting
Machine with control
panel (plugboard)
inserted, but not
engaged.

https://en.wikipedia.org/wiki/IBM_407

ENIAC
On the left:
Arithmetical units
with plugboards

On the right:
Function tables
(sort of read-only
random-access
memory, every cell
is a mechanical
10-position switch)

ENIAC as von Neumann CPU

• In 1948, ENIAC was converted to a stored-
program computer by creating a ”program”
(plugboard wiring) to use function tables as
program memory

• Von Neumann was not inventor of this idea, but
he worked as a consultant in EDVAC project and
participated in ENIAC conversion

• EDVAC was operational in 1949 and was not a
true von Neumann machine

• EDVAC used serial (not random access) program
memory based on mercury delay lines

First true von Neumann computer
• “Manchester baby” or SSEM
• Created in Victoria University of Manchester, England
• Von Neumann had nothing to do with that project
• Run first program 21 June 1948

three months before converted ENIAC
• Had random-access memory based on so-called

Williams tube (read Wikipedia...)
• Used same memory for program and data
• Was a testbed for Manchester Mark I and later Ferranti

Mark I (first serially produced and commercially
available stored-memory computer)

What happened next

• After stored program computer proved to be a
good idea, people started to write program
tools to simplify programming: assemblers
and linkers

• Then other people invented higher level
languages, like autocode, Fortran and Lisp

• And then it got out of control and now we
have multilevel platforms writing programs for
themselves

